超声波液位计是由微处理器控制的数字液位仪表。在测量中超声波脉冲由传感器(换能器)发出,声波经液体表面反射后被同一传感器接收或超声波接收器,通过压电晶体或磁致伸缩器件转换成电信号,并由声波的发射和接收之间的时间来计算传感器到被测液体表面的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。
超声波液位计可通过4~20mA连接到显示表或各种DCS系统中,为工业的自动化运行,提供实时的液位数据。
作为典型的非接触式液位测量仪表之一,它不必接触工业介质即可满足大多数密闭和敞开容器里的物位测量要求,可以测量几厘米到几十米的物位范围,能够在诸多恶劣条件下表现出非凡的能力。
超声波物位计测量的内在原理是非常简单的,超声波探头安装在容器的顶部,发射脉冲波达到被测介质表面,同时接收由被测物表面反射回来的回波,由发射波和回波的时间差,也就是声波在空间中的往返穿行时间来测出探头距被测介质表面的距离。本文着重分析一下影响超声波物位计测量的几个因素。
1、声波速度的影响
超声波物位计在工业应用中的频率为5KHZ-5MHZ,在物位测量技术方面为5HZ-40HZ,超声波探头到介质表面距离的计算公式如下:D=t1×C/2
其中D:探头到介质表面的距离;t1:声波的传播时间;C:波的传播速率。由此可知,除了声波的传播时间的测量准确性,声波的传播速度起着决定性的作用。声速的变化取决于传播媒介的不同。在实际应用中,多种因素影响着传播媒介及声速。为了获得更加准确的测量结果,超声波物位仪表可以由程序设定不同媒介的声速。
2、温度的影响
温度的变化影响着声速的变化,在正常环境中温度的变化带给声速的变化为0.17%℃。在实际测量中,多种自然因素会导致误差。在实际应用中,探头周围环境、超声波传播媒介的温度以及被测介质的温度不尽相同。测量系统应根据实际要求选择与探头结合的内置温度传感器与探头分离的外置温度传感器。更为精确的测量系统,可以在距探头的特定位置放置回波反射参照物,产生参考回波,以对温度影响进行补偿。这种方法的有效性取决于回波反射参照物的放置精准程度。
3、压力的影响
压力的变化造成的温度变化之间的关系为:LnT1/T2=1.4LnP1/P2。虽然压力的变化影响着探头的工作状态,但压力的变化不直接产生声速的变化。由于压力和温度之间的关系T=KP(K为常数),所以压力的变化影响着温度的变化,进而影响声速的变化。
4、声波的发射与传播
超声波物位计探头的内部有一个或多个压电陶瓷晶体,用于声波信号的产生和接收,当压电陶瓷晶体获得电信号时产生微小机械振动发出声波。同理,回波使压电陶瓷晶体产生微小机械振动发出电磁信号,实际是一个探头扮演着发射与接收的双重角色。
当压电陶瓷晶体获得电脉冲激励时,将产生一段时间的共鸣,最初的共鸣振幅很大,随着探头震动能量的减弱,振幅将趋于零。在共鸣期间内,共鸣覆盖了回波,使得探头不准确判定回波,这段时间为几毫秒,相对应的距离范围成为“盲区”。10mS相对盲区为1.7m。为了确保发射波与回波时间差的准确性,回波信号必须有足够的强度以产生和转化为电脉冲,回波信号的强度取决于发射信号的强度,传播介质的特性,传播的距离和被测介质反映面的特性。
5、声波强度的衰减
声波传播过程中强度的减弱是由于空气对它的吸收,这是由于空气的粘性和热传导以及空气分子的行为特性决定的。
6、粉尘的影响
粉尘环境对声速的影响非常小,但对超声波的衰减很明显,是阻碍超声波方案实施的主要因素。实际应用中,低频率并带有特殊泡沫塑料表面的探头在粉尘环境中的使用方案是非常成功的。
7、气流的影响
就理论而言,在开放环境下,空气作为超声波的载体,横向的空气气流将使得声波的传播路径弯曲变长,但实际使用中的影响并不大。
8、被测介质表面的影响
超声波物位计回波强度比率取决于被测介质的特性,所有的介质对超声波都是部分的反射,部分的吸收以及部分的传输。浓密的介质,会产生很强的回波,反之成立。实际测量中,液体界面的回波远远好于固体。回波在固定颗粒表面产生时,其角度方向不同,相互有着时间差,造成相位不同从而减少直接反射回探头的回波强度。
想了解更多关于超声波液位计的信息,欢迎致电咨询:400-886-9935
文章来源西安鼎兴自控工程有限公司,转载请标明出处。